Sigma algebra

systém množin uzavřený na spočetné sjednocení a doplněk
(přesměrováno z Měřitelná množina)

-algebra (sigma-algebra, též -těleso) je v matematice libovolný neprázdný systém množin, který je uzavřený na spočetné sjednocení a na rozdíl dvou prvků a obsahuje sjednocení všech svých prvků. Prefix v názvu vyjadřuje uzavřenost na spočetné sjednocení.

Definice

editovat

Systém   podmnožin množiny   nazveme  -algebrou, jestliže obsahuje prázdnou množinu a je uzavřený na spočetné sjednocení a doplněk, tj.:

  1.  
  2. jestliže  , pak  
  3. jestliže  , pak  

Vlastnosti

editovat
  •  -algebra obsahuje sjednocení všech svých prvků, tj.:  , což dostaneme dosazením prázdné množiny za   v poslední části definice
  •  -algebra je uzavřená na spočetný průnik svých prvků, tj. pro   platí  

Použití

editovat

Koncept  -algebry je důležitý především v teorii míry a v teorii pravděpodobnosti. Míra je libovolná nezáporná funkce, která je  -aditivní a má na prázdné množině hodnotu  . Pravděpodobnost je míra, která má na množině   hodnotu  .

Měřitelná množina

editovat

V teorii míry se dvojice  , kde   je libovolná množina a   je  -algebra na   nazývá měřitelný prostor a množiny   nazýváme měřitelné množiny.

Související články

editovat