Kvantil
Kvantil (z lat. quantilis, jak malý/velký?[zdroj?]) je ve statistice charakteristika datového souboru reálných čísel nebo rozdělení náhodné proměnné udávající hodnotu, kterou stanovená část p (uváděná jako číslo z intervalu nebo v procentech v rozmezí 0–100 %) hodnot nepřesahuje. Je také možné říct, že kvantily jsou hodnoty, které dělí soubor seřazených (například naměřených) hodnot na několik zhruba stejně velkých částí. Příklad: výrok, že 90 % účastníků závodu mělo čas pod 2 hodiny, vlastně konstatuje, že 90. percentil (nebo devátý decil) dosažených časů je 2 hodiny. Výrok, že medián hrubé měsíční nominální mzdy je 34360 Kč, znamená, že polovina osob, které pobírají mzdu, má hrubou měsíční nominální mzdu nejvýše 34360 Kč, druhá polovina má mzdu vyšší.
![](http://upload.wikimedia.org/wikipedia/commons/thumb/1/19/Quantile.svg/310px-Quantile.svg.png)
Protože pro daný datový soubor nebo rozdělení pravděpodobnosti závisí hodnota kvantilu na velikosti stanovené části p, je možné kvantil chápat jako binární relaci (za určitých podmínek funkci) mezi p a množinou hodnot určitého (přinejmenším pořadového) statistického znaku nebo náhodné veličiny. Pokud funkce, která udává vztah mezi p a Qp, existuje, nazýváme ji kvantilová funkce. Jde o inverzní funkci k distribuční funkci.
Kvantil je míra polohy rozdělení pravděpodobnosti náhodné veličiny. Popisují body, ve kterých distribuční funkce náhodné proměnné prochází danou hodnotou.
Definice
editovatKvantily tvoří vlastně inverzní funkci k funkci distribuční. V případě spojitého rozdělení s distribuční funkcí F(x) je kvantil Qp takové číslo, pro které platí:
- P(X ≤ Qp) = p, tedy F(Qp) = p.
Pokud je distribuční funkce rostoucí (tedy i prostá), lze kvantil psát přímo jako inverzní funkci:
- Qp = F−1(p).
Distribuční funkce však nemusí být prostá (byť je vždy neklesající), takže tuto definici nelze použít vždy. U diskrétních rozdělení pak ani vždy nemusí existovat bod, kde by distribuční funkce dosahovala přesně požadované hodnoty. Obecněji se proto kvantil Qp definuje jako takové číslo, pro které platí, že:
- P(X ≤ Qp) ≥ p a zároveň P(X < Qp) ≤ p,
distribuční funkcí to lze vyjádřit jako:
- F(Qp+) = F(Qp) ≥ p a zároveň F(Qp−) ≤ p.
Ani tato obecná definice však přesně neurčuje kvantil v případě, že distribuční funkce není prostá. V takovém případě může jedné hodnotě p odpovídat několik čísel Qp, která tuto definici splňují. To se zpravidla nepovažuje za problém, někdy se definice doplňuje o způsob výběru jednoznačné hodnoty, např. největší (příp. nejmenší) z těchto čísel, jejich průměr apod., jedná se však jen o konvence bez nějakého hlubšího matematického významu.
Speciální označení kvantilů
editovatKvantily pro některé význačné hodnoty jsou označovány zvláštními jmény a pro nejdůležitější rozdělení jsou hodnoty základních kvantilů uváděny v tabulkách.
Medián
editovatKvantil rozdělující statistický soubor na dvě stejně početné množiny se nazývá medián, tzn. jedná se o kvantil .
Tercil
editovatDva tercily rozdělují statistický soubor na třetiny. 1/3 prvků má hodnoty menší nebo rovné hodnotě prvního tercilu, 2/3 prvků mají hodnoty menší nebo rovné hodnotě tercilu druhého.
Kvartil
editovatTři kvartily rozdělují statistický soubor na čtvrtiny. 25 % prvků má hodnoty menší než dolní kvartil a 75 % prvků hodnoty menší než horní kvartil ; někdy se označují a .
Kvartilová odchylka je jedna z měr určující variabilitu znaku ve statistickém znaku souboru. Rovná se polovině rozdílu horního a dolního kvartilu.
Kvintil
editovatČtyři kvintily dělí statistický soubor na pět stejných dílů. 20 % prvků souboru má hodnoty menší (nebo rovné) hodnotě prvního kvintilu, 80 % hodnoty větší (nebo rovné).
Decil
editovatDecil dělí statistický soubor na desetiny. Jako tý decil označujeme .
Percentil
editovatPercentil dělí statistický soubor na setiny. Jako -tý percentil označujeme . Používá se například při vyhodnocení testů: Pokud má účastník umístění na 85. percentilu, znamená to, že 85 % účastníků mělo horší výsledek (a 15 % účastníků je lepších nebo stejných jako on [včetně jeho samého]).[1][2][3] Znamená to, že účastník s nejlepším umístěním nebude mít percentil 100 %, ale nižší (o část vyjadřující procento jeho vlastního podílu na výsledku). Percentil tak vypočteme:
Kde PR je hodnota percentilu, CF je kumulativní počet výsledků a F je počet výskytů počítaného výsledku (percentilu), viz obrázek vpravo.
Charakteristiky variability
editovatHodnoty kvantilů představují charakteristiky polohy. Znalosti kvantilů lze však použít i k určení charakteristiky variability.
Mezikvartilové rozpětí
editovatPomocí horního a dolního kvartilu lze zavést mezikvartilové rozpětí, které definujeme jako hodnotu .
Mezidecilové rozpětí
editovatPomocí decilů lze zavést mezidecilové rozpětí, které je definováno jako .
Mezipercentilové rozpětí
editovatPomocí percentilů lze zavést mezipercentilové rozpětí, které je definováno jako .
Použití
editovatKvantily lze používat např. pro vyhodnocování přijímacích testů: bodové výsledky všech zájemců tvoří statistický soubor, zatímco příslušné kvantily označují, jaká část zájemců dosáhla daného výsledku. Pokud například kvantil 90 % má hodnotu 150 bodů a některý student v testu získal právě 150 bodů, ví, že má lepší hodnocení než 90 % všech studentů (je tedy mezi 10 % nejlepších a pokud má být přijato např. 15 % zájemců, měl by se kvalifikovat).
Příklad
editovatU normálního rozdělení s nulovou střední hodnotou a jednotkovou směrodatnou odchylkou jsou některé kvantily:
p | 0,5 | 0,9 | 0,95 | 0,975 | 0,99 | 0,995 |
Qp | 0,0 | 1,2816 | 1,6449 | 1,9600 | 2,3263 | 2,5758 |
Zde je například vidět, že necelý trojnásobek směrodatné odchylky u tohoto rozdělení pokrývá 99 % hodnot.
Odkazy
editovatReference
editovat- ↑ Co je to percentil?
- ↑ Crocker, L., & Algina, J. (1986). Introduction to classical and modern test theory. New York: Harcourt Brace Jovanovich College Publishers. ISBN 0-03-061634-4
- ↑ SCHULTZKIE, Lisa. Percentiles and More Quartiles [online]. Oswego City School District Regents Exam Prep Center [cit. 2013-11-26]. Dostupné v archivu pořízeném dne 2012-07-13.
Související články
editovatExterní odkazy
editovat- Obrázky, zvuky či videa k tématu kvantil na Wikimedia Commons