Metoda anihilátorů

Metoda anihilátorů je postup používaný v matematice pro hledání partikulárního řešení určitých typů nehomogenních obyčejných diferenciálních rovnic. Podobá se metodě neurčitých koeficientů, ale na rozdíl od ní není třeba partikulární řešení hádat, ale pro jisté tvary pravé strany je lze přímo určit. V metodě anihilátorů se termín neurčité koeficienty používá pro označení kroku, ve kterém se počítají koeficienty.

Postup při metodě anihilátorů je následující: Rovnici zapíšeme jako použití diferenciálního operátoru na závislou proměnnou : , a hledáme jiný diferenciální operátor takový, že . Tento operátor se nazývá anihilátor a podle něj se jmenuje celá metoda. Použitím na obě strany obyčejné diferenciální rovnice vznikne homogenní obyčejná diferenciální rovnice , pro kterou hledáme bázi řešení jako pro původní rovnici. Původní nehomogenní obyčejná diferenciální rovnice se použije pro získání soustavy rovnic omezující koeficienty lineární kombinace tak, aby vyhovovaly obyčejné diferenciální rovnici.

Tato metoda není tak obecná jako metoda variace konstant, protože anihilátor nemusí vždy existovat.

Tvary anihilátoru

editovat
f(x) Tvar anihilátoru
   
   
   
   
   
   
   
   

Pokud je   tvořena součtem výrazů uvedených v tabulce, je anihilátor součinem odpovídajících tvarů anihilátorů.

Příklad

editovat

Řešíme rovnici  ; diferenciální operátor  . Nejjednodušší anihilátor výrazu   je  . Kořeny   jsou  , takže báze řešení   je  

Položením   dostaneme

 

což dává soustavu rovnic

 
 

která má řešení

 ,  

takže množina řešení

 

Toto řešení můžeme rozložit na homogenní a nehomogenní složku. Konkrétně   je partikulární integrál pro nehomogenní diferenciální rovnici a   je komplementární řešení odpovídající homogenní rovnici. Hodnoty   a   jsou obvykle určeny množinou počátečních podmínek. Protože se jedná o rovnici druhého řádu, pro určení těchto hodnot potřebujeme dvě takové podmínky.

Fundamentální řešení   a   můžeme dále přepsat pomocí Eulerova vzorce:

 
 

Pak   a vhodná úprava konstant dává jednodušší a srozumitelnější tvar komplementárního řešení,  .

Reference

editovat

V tomto článku byl použit překlad textu z článku Annihilator method na anglické Wikipedii.