Laplaceova transformace

transformace pro řešení diferenciálních rovnic

Laplaceova transformace v matematice označuje jednu ze základních integrálních transformací. Používá se k řešení některých obyčejných diferenciálních rovnic,[1] zejména těch, jež se objevují při analýze chování elektrických obvodů, harmonických oscilátorů a optických zařízení. V technice se s ní setkáme při studiu vlastností systémů spojitě pracujících v čase, kde je protějškem Z-transformace pro diskrétní systémy.

Užitečnost Laplaceovy transformace spočívá v tom, že převádí funkce reálné proměnné na funkce komplexní proměnné způsobem, při němž se mnohé složité vztahy mezi původními funkcemi radikálně zjednoduší.

Laplaceovu transformaci odvodil roku 1812 francouzský matematik Pierre-Simon de Laplace. Již dříve (1737) však tuto transformaci použil Leonhard Euler při řešení jistých obyčejných diferenciálních rovnic.

Definice

editovat

Laplaceova transformace

editovat

Nechť je funkce   spojitá (nebo alespoň po částech spojitá) a definovaná na intervalu  . Pak Laplaceova transformace   funkce   je definována integrálním vztahem:

 ,

kde   je komplexní nezávisle proměnná. Obraz funkce   při Laplaceově transformaci je funkce jedné komplexní proměnné  , často ji značíme  . Definičním oborem   je oblast konvergence integrálu (viz níže).

Funkci   nazýváme originálem a funkci   obrazem funkce  .

Inverzní Laplaceova transformace

editovat

Inverzní Laplaceova transformace je dána vztahem:

 ,

kde   je libovolné reálné číslo ležící v oblasti konvergence   (pak celá přímka  , přes niž se integruje, leží v oblasti konvergence (viz níže)).

Vlastnosti Laplaceovy transformace

editovat

Existence

editovat

I v případě, že funkce   je na celém intervalu   spojitá a definovaná, nemusí její obraz existovat. Jestliže totiž má mít definiční integrál konečnou hodnotu, musí   splňovat kritérium konvergence

 .

Například funkce   tuto podmínku nesplňuje, a proto její obraz neexistuje.

Oblast konvergence

editovat

Pro danou funkci   se množina hodnot  , pro něž integrál v Laplaceově transformaci konverguje, nazývá oblast konvergence. Lze ukázat, že jestliže integrál konverguje pro   v bodě  , pak konverguje v každém bodě  , pro který  . Oblast konvergence Laplaceovy transformace je tedy  , kde   je dáno chováním funkce   pro  .

Vztah k inverzní Laplaceově transformaci

editovat

Pro každou funkci   takovou, že   existuje, platí pro skoro všechna   (Lerchova věta):

 

Vztah k derivaci

editovat

Výhodou použití Laplaceovy transformace pro počítání diferenciálních rovnic je její vztah k derivaci:

 

Vzorec lze odvodit pomocí integrace per partes a platí právě tehdy, když jednotlivé derivace existují. Tento vztah umožňuje přímé začlenění počátečních podmínek do výpočtu řešení diferenciální rovnice.

Základní vlastnosti Laplaceovy transformace

editovat

Pro dané funkce   a  , a jejich příslušné Laplaceovy transformace   a   následující tabulka shrnuje vlastnosti Laplaceovy transformace:

Vlastnosti jednostranné Laplaceovy transformace
Vzor Obraz Komentář
Linearita     Obrazem lineární kombinace vzorů je lineární kombinace obrazů s týmiž koeficienty. Odvodit lze na základě definičního vztahu. Této vlastnosti se využívá při odvozování goniometrických a hyperbolických funkcí.
Derivování podle parametru    
Derivování originálu     Získá se z integrování per partes. Odčítá se limita funkce zprava v počátku (počáteční podmínka).
Integrování originálu       je Heavisideova funkce.
Podobnost      
Tlumení    
Konvoluce    
Posunutí (věta o translaci)     Posunutí proměnné   v originále o konstantu   se projeví vynásobením obrazu výrazem  

Reference

editovat
  1. NIEVES, Oscar. Solving differential equations with the Laplace transform [online]. 2022-10-31 [cit. 2022-11-01]. Dostupné v archivu pořízeném dne 2022-10-31. (anglicky) 

Související články

editovat

Externí odkazy

editovat