iterativní metoda pro řešení lineární soustavy rovnic
V lineární algebře je Jacobiho metoda (též Jacobiova metoda) iteračním algoritmem pro numerické řešení soustavy lineárních rovnic. Je založena na rozkladu matice soustavy na součet dvou komponent, z nichž jedna je diagonální a je díky tomu snadné určit její inverzní matici. V nematicové formulaci postup odpovídá tomu, že v každé iteraci se použitím přibližných hodnot řešení z každé rovnice vypočítá diagonální prvek, který představuje novou iteraci a přesnější odhad řešení. Metoda je pojmenována po Carlu Gustavu Jacobim.
Postačující podmínkou pro konvergenci metody je, že matice A je řádkově ostře diagonálně dominantní. To znamená, že pro každý řádek je absolutní hodnota diagonálního členu větší než součet absolutních hodnot ostatních členů:
Tato podmínka není nutná. Jacobiho metoda může konvergovat i pro matice, které tuto podmínku nesplňují.
spočívá v nalezení hodnoty z první rovnice, přičemž ostatní neznámé nabývají hodnoty zvolené počáteční iterací. Z druhé rovnice se podobně určí hodnota atd.
Pro počáteční iteraci (0, 0, 0, 0) je další iterace
Toto je další odhad řešení. Postup se opakuje a v tabulce jsou shrnuta přibližná řešení po pěti iteracích.