Tento článek je o algebraické struktuře podobné grupě. O pojmu z teorie kategorií pojednává článek Grupoid (teorie kategorií).

V algebře je grupoid základní algebraická struktura s jednou binární operací. Je to množina A, na které je definována jedna binární operace •. Množina A je vzhledem k operaci • uzavřená, tj. výsledkem operace provedené na libovolných prvcích množiny A je prvek množiny A.

Asociativita   Neutrální prvek    Inverzní prvek    Komutativita
Abelova grupa AnoAno AnoAno AnoAno AnoAno
Grupa AnoAno AnoAno AnoAno NeNe
Monoid AnoAno AnoAno NeNe NeNe
Pologrupa AnoAno NeNe NeNe NeNe
Lupa NeNe AnoAno AnoAno NeNe
Kvazigrupa NeNe NeNe AnoAno NeNe
Grupoid NeNe NeNe NeNe NeNe
Struktury s jednou binární operací
Schéma vztahů mezi algebraickými strukturami. Výchozí je grupoid (anglicky magma) s jednou uzavřenou operací. Přidáváním dalších podmínek vznikají např. pologrupa (semigroup) a kvazigrupa (quasigroup).

Definice

editovat

Množinu  , na které je definována jedna binární operace (·) nazýváme grupoid a značíme  .

Příklady

editovat

Protipříklady

editovat

Vlastnosti

editovat
  • Grupoid (M; ·) se nazývá asociativní, právě když (∀x,y,z ∈ M)(x·yz = x·(y·z) – tj. operace na něm definovaná je asociativní. Pokud je grupoid asociativní, nazývá se pologrupa.
  • Grupoid (M; ·) se nazývá grupoid s neutrálním prvkem, právě když (∃e ∈ M)(∀x ∈ M) e·x = x·e = x – tj. operace na něm definovaná má neutrální prvek.
    • Jde-li o operaci násobení (tj. multiplikativní symboliku) pak neutrálnímu prvku říkáme jednotkový prvek a značíme: 1. Jde-li o operaci sčítání (tj. aditivní symboliku) pak neutrálnímu prvku říkáme nulový prvek a značíme: 0.
  • Grupoid (M; ·) se nazývá grupoid s inverzními prvky, právě když 1 ∈ M ∧ (∀x ∈ M)(∃y ∈ M) x·y = y·x = 1 – tj. obsahuje jednotkový prvek a ke každému prvku také inverzní prvek.
  • Grupoid (M; ·) se nazývá komutativní, právě když (∀x,y ∈ M)x·y = y·x – tj. operace na něm definovaná je komutativní.
  • Grupoid (M; ·) se nazývá grupoid s krácením zleva, právě když (∀x,y,z ∈ M) (z·x = z·y ⇒ x = y).
  • Grupoid (M; ·) se nazývá grupoid s krácením zprava, právě když (∀x,y,z ∈ M) (x·z = y·z ⇒ x = y).
  • Grupoid (M; ·) se nazývá grupoid s krácením, právě když (∀x,y,z ∈ M) (z·x = z·y ⇒ x = y) ∧ (x·z = y·z ⇒ x = y).
  • Grupoid (M; ·) se nazývá grupoid s dělením, právě když (∀x,y ∈ M)(∃u,v ∈ M) (x·u = y ∧ v·x = y).

Související články

editovat
  • Pologrupa – grupoid, jehož operace je asociativní
  • Monoid – grupoid, jehož operace je asociativní a který má neutrální prvek
  • Grupa – monoid rozšířený o inverzní operaci