Moment setrvačnosti
Moment setrvačnosti je skalární fyzikální veličina, která vyjadřuje míru setrvačnosti tělesa při otáčivém pohybu. Její velikost závisí na rozložení hmoty v tělese vzhledem k ose otáčení. Body (části) tělesa s větší hmotností a umístěné dál od osy mají větší moment setrvačnosti. Kvadratický moment průřezu se někdy také nazývá moment setrvačnosti a to i přesto, že není mírou setrvačnosti tělesa.
Značení
editovatVýpočet
editovatDiskrétní rozložení hmoty
editovatPři otáčivém pohybu soustavy hmotných bodů kolem nehybné osy opisují jednotlivé hmotné body kružnice, jejichž středy leží na ose otáčení. Úhlová rychlost všech bodů je stejná.
Celkovou kinetickou energii určíme jako součet kinetických energií všech hmotných bodů soustavy, tzn.
- ,
kde je hmotnost -tého hmotného bodu, je velikost jeho rychlosti, je jeho (kolmá) vzdálenost od osy otáčení a bylo využito toho, že rychlost bodu při kruhovém pohybu je přímo úměrná vzdálenosti bodu od osy otáčení, tzn. . Předchozí vztah lze upravit na tvar
- ,
kde veličina představuje moment setrvačnosti tělesa k ose otáčení. Moment setrvačnosti soustavy hmotných bodů je tak definován vztahem
Spojité rozložení hmoty
editovatV mechanice kontinua (tedy v případě spojitě rozložené hmoty) lze k určení momentu setrvačnosti použít vztah
- ,
kde integrace se provádí přes celé těleso o celkové hmotnosti .
Je-li hustota tělesa, pak , kde je objem tělesa a moment setrvačnosti lze vyjádřit ve tvaru
Integruje se přes objem celého tělesa .
V případě, že je těleso homogenní, tzn. , je možné předchozí vztah zjednodušit
Poloměr setrvačnosti
editovatMoment setrvačnosti je také možné zapsat jako součin celkové hmotnosti tělesa a čtverce jisté střední vzdálenosti , ve které by musela být soustředěna veškerá hmotnost tělesa, aby moment setrvačnosti byl roven momentu celého tělesa.
Vzdálenost se nazývá poloměr setrvačnosti nebo gyrační poloměr.
Momenty setrvačnosti některých těles
editovatPro praktické použití je vhodná znalost některých často používaných momentů setrvačnosti.
- Moment setrvačnosti tyče délky a hmotnosti vzhledem k ose procházející středem délky tyče, kolmo k její délce.
- Moment setrvačnosti tyče délky a hmotnosti vzhledem k ose procházející koncem tyče kolmo k její délce.
- Moment setrvačnosti plného válce o poloměru a hmotnosti vzhledem k ose souměrnosti.
- Moment setrvačnosti tlustostěnného pláště válce o vnitřním poloměru a vnějším poloměru a hmotnosti vzhledem k ose souměrnosti.
- Moment setrvačnosti tenké obruče o poloměru a hmotnosti vzhledem k ose souměrnosti.
- Moment setrvačnosti obdélníku o rozměrech a a hmotnosti vzhledem k normále od středu obdélníku.
Steinerova věta
editovatMoment setrvačnosti vzhledem k ose procházející mimo těžiště tělesa lze určit podle Steinerovy věty jako součet momentu setrvačnosti vzhledem k rovnoběžné ose procházející těžištěm a součinu hmotnosti a čtverce vzdálenosti od těžiště, tzn.
- ,
kde je moment setrvačnosti vzhledem k rovnoběžné ose jdoucí těžištěm tělesa, je hmotnost tělesa a je kolmá vzdálenost těžiště od osy otáčení.
Tenzor setrvačnosti
editovatOtáčí-li se soustava hmotných bodů kolem libovolné osy úhlovou rychlostí , má kinetická energie tohoto rotačního pohybu hodnotu
- ,
kde je moment setrvačnosti tělesa vzhledem k ose , je rychlost -tého hmotného bodu soustavy, a je polohový vektor -tého hmotného bodu vzhledem k počátku zvolené soustavy souřadnic, kterým prochází osa .
Vektor , který směřuje podél osy lze vyjádřit prostřednictvím jeho složek vzhledem k souřadnicovým osám . Předchozí vztah je pak možno rozepsat do tvaru
a rozepíšeme-li v tomto výrazu jednotlivé mocniny, dostaneme po úpravě
Pro kinetickou energii pak dostáváme výraz
- ,
kde
jsou momenty setrvačnosti vzhledem k souřadnicovým osám a
jsou deviační momenty.
Předchozí vztahy platí pro těleso popsané soustavou hmotných bodů. Považujeme-li hmotu v tělese za spojitě rozloženou, přejdeme od sumace k integraci a pro momenty setrvačnosti k souřadnicovým osám dostaneme
Pro deviační momenty získáme podobně vztahy
Vektor , který leží v ose je možné využít k získání směrových kosinů rotační osy, tzn. , kde je velikost vektoru . Po dosazení do výrazů pro kinetickou energii a po úpravě dostaneme výraz pro výpočet momentu setrvačnosti vzhledem k ose, která svírá se souřadnicovými osami úhly
Změní-li se směr osy vzhledem k tělesu, změní se také velikost momentu setrvačnosti . Toto rozložení charakterizuje elipsoid setrvačnosti.
Momenty setrvačnosti k souřadnicovým osám a deviační momenty lze uspořádat do tzv. tenzoru setrvačnosti:
- ,
kde symbol představuje tenzorový součin, jehož výsledkem je symetrická čtvercová matice.
Kvadratický moment průřezu (tzv. plošný moment setrvačnosti)
editovatKvadratický moment průřezu resp. kvadratický moment plochy (nesprávně nazývaný jako plošný moment setrvačnosti, neboť tento se setrvačností těles nemá nic společného) se využívá velmi často v mechanice např. při výpočtu průhybů nosníků, napětí, ztrátě stability atp.
U kvadratického momentu průřezu se obvykle jedná o moment rovinné plochy. Pro výpočet můžeme použít vztahy pro výpočet momentu setrvačnosti k ose, přičemž položíme . Hmotnostní element je pak , kde je plošná hustota zkoumané plochy (obecně závislá na a ).
Kvadratické momenty plochy k osám jsou tedy
Z deviačních momentů je nenulový pouze
Pokud je plocha homogenní (plošná hustota je konstantní), můžeme ji vytknout před integrál a vztahy se zjednoduší na
Namísto elipsoidu setrvačnosti dostáváme elipsu setrvačnosti.
Položíme-li do těžiště tělesa počátek pravoúhlé soustavy souřadnic, potom kvadratické momenty ke třem vzájemně kolmým rovinám, proloženým souřadnicovými osami, jsou
Srovnáním s momenty setrvačnosti k osám pak platí
Polární kvadratický moment plochy (plošný moment setrvačnosti)
editovatKvadratické momenty plochy můžeme určovat nejenom k ose, ale také k bodu, kdy se jedná o tzv. polární kvadratický moment.
Polární kvadratický moment části rovinné plochy (vzhledem k počátku souřadné soustavy ) je
Odkazy
editovatLiteratura
editovat- Jozef Kvasnica, Antonín Havránek, Pavel Lukáč, Boris Sprušil Mechanika, Nakladatel: Academia, ISBN 80-200-1268-0, EAN 9788020012685, Rok vydání: 2004 (2. vydání)
- Landau LD and Lifshitz EM (1976) Mechanics, 3rd. ed., Pergamon Press. ISBN 0-08-021022-8 (hardcover) and ISBN 0-08-029141-4 (softcover).
- Goldstein H. (1980) Classical Mechanics, 2nd. ed., Addison-Wesley. ISBN 0-201-02918-9
- Symon KR. (1971) Mechanics, 3rd. ed., Addison-Wesley. ISBN 0-201-07392-7
- Online výpočet momentu setrvačnosti základních těles.
Související články
editovatExterní odkazy
editovat- Obrázky, zvuky či videa k tématu moment setrvačnosti na Wikimedia Commons