Tento článek je o geometrické ploše. O pracovní ploše v počítači pojednává článek Desktopové prostředí.
Plocha označuje v matematice a fyzice dvojrozměrný geometrický útvar. Příkladem ploch jsou rovina, kulová plocha, povrch válce nebo kuželová plocha. Přesné matematické definice se v různých kontextech a v různých teoriích liší.
Výraz plocha se někdy nesprávně používá nejen pro označení geometrického útvaru, ale také pro označení obsahu geometrického tělesa.
kde je funkce, která má v každém bodě spojitouparciální derivaci alespoň prvního řádu a na žádné otevřené množině není identicky rovna nule.
Body plochy, v nichž je alespoň jedna z těchto parciálních derivací nenulová, se nazývají regulární body plochy, zatímco body, v nichž jsou všechny parciální derivace prvního řádu nulové označujeme jako singulární body. Příkladem singulárního bodu je např. vrchol kužele.
Singulární bod, v němž funkce má alespoň jednu nenulovou parciální derivaci druhého řádu, se nazývá kónický bod plochy.
Plocha určená svojí normálou se označuje jako orientovaná plocha.
Uvažujme plochu, jejíž souřadnice jsou vyjádřeny soustavou rovnic
Tato soustava rovnic představuje parametrické vyjádření plochy, přičemž jsou parametry plochy. Každou dvojici z určitého oboru nazýváme bodem plochy. Předpokládáme přitom, že tyto rovnice jsou na spojité a mají spojité nebo po částech spojité parciální derivace prvního řádu podle a .
Vztahy mezi normálou plochy , rádiusvektorem a jejich derivacemi určují tzv. základní rovnice plochy. Tyto rovnice lze pro plochu určenou uvést v různých tvarech.
Body plochy, v nichž má tato matice hodnost jsou regulárními body. Je-li hodnost matice , pak jde o singulární body.
Máme-li plochu zadanou rovnicemi, které mají všude v nenulovou parciální derivaci prvního řádu a uvedená matice má v každém bodě hodnost , pak plochu označujeme jako hladkou.