Nejmenší a největší prvek
Jako největší prvek částečně uspořádané množiny se označuje takový prvek, který je větší než všechny ostatní prvky této množiny.[1][2] Formálně: prvek a ∈ A je největším prvkem množiny A (která je podmnožinou nějaké částečně uspořádané množiny), pokud platí:
- pro libovolný prvek b ∈ A platí b ≤ a.
Obdobně je definován nejmenší prvek, který je menší než všechny ostatní prvky této množiny (a ve formální definici se tedy objevuje opačná podmínka: a ≤ b pro všechny prvky b).
Největší prvek množiny A se značí max A, nejmenší prvek min A.
Některé množiny (například otevřený interval) největší (resp. nejmenší) prvek nemají, ale mohou mít supremum (resp. infimum). Pokud množina největší (resp. nejmenší) prvek má, je tento prvek také jediným maximálním (resp. minimálním) prvkem této množiny. Libovolná množina má nejvýše jeden největší (resp. nejmenší) prvek.
Odkazy
editovatSouvisející články
editovatReference
editovat- ↑ ŠKRÁŠEK, Josef; TICHÝ, Zdeněk. Základy aplikované matematiky I. 1. vyd. Praha: SNTL, 1983. 876 s. S. 65.
- ↑ Petr Hliněný: Výukové texty k předmětu Úvod do informatiky Archivováno 3. 2. 2013 na Wayback Machine., FI MUNI, kapitola 5.2 Další pojmy uspořádaných množin, str. 7