miRNA
miRNA neboli microRNA jsou jednovláknové řetězce nekódující RNA o délce 21–23 nukleotidů, které se podílejí na regulaci genové exprese. miRNA vznikají transkripcí z genů v DNA, ale následně nedochází k jejich translaci v protein. Namísto toho se každý primární transkript miRNA (tzv. pri-miRNA) páruje s některými vlastními komplementárními bázemi a nakonec se mění na plně funkční miRNA. Tyto molekuly jsou částečně komplementární k určitým molekulám mRNA vyskytujícím se v buňce a jsou schopné regulovat (konkrétně snižovat) tímto výrobu proteinů, které tyto mRNA kódují. K objevu miRNA došlo v roce 1993 v týmu Leeho a jeho spolupracovníků v laboratoři Victora Ambrose,[1] ale termín microRNA je mnohem mladší – pochází z roku 2001 z článků v Science.[2]
miRNA se vyskytují zejména u rostlin a živočichů, ale vyvinula se u těchto skupin asi nezávisle.[3]
Vznik a úpravy miRNA
editovatGeny kódující miRNA jsou mnohem delší (obsahují více nukleotidů), než finální upravené miRNA. miRNA je totiž nejprve v jádře hrubě přepsána polymerázami do podoby asi 70 nukleotidů dlouhého řetězce pri-miRNA s čepičkou na 5' konci a poly-A koncem na straně druhé. První úpravy obstarává u živočichů proteinový komplex známý jako Microprocessor complex. Ten je složený z nukleázy jménem Drosha a proteinu Pasha, schopného vázat na sebe dvouvláknovou RNA. Tento komplex mění pri-miRNA na tzv. pre-miRNA[4] Následně pre-miRNA vstupuje do cytoplazmy, kde interaguje s endonukleázou jménem Dicer za vzniku miRNA, jenž se váže do komplexu RISC (RNA-induced silencing complex).[5] Právě RISC je schopen utlumovat expresi genů, jev známý jako RNA interference. U rostlin je celá kaskáda vzniku miRNA mírně odlišná, což je dáno tím, že u rostlin není přítomen protein Drosha a jeho roli v podstatě zastává Dicer.[6]
Funkce
editovatFunkce miRNA zřejmě spočívá v regulaci genů a jejich exprese. Molekuly miRNA jsou komplementární k části jedné nebo několika konkrétních mRNA. Živočišná miRNA vykazuje komplementaritu obvykle k regionu 3' UTR (část mRNA nekódující proteiny, ale vykonávající některé jiné regulační funkce vztahující se k dané molekule mRNA), zatímco rostlinná miRNA je komplementární ke kódujícím regionům messenger RNA. Když se spárují odpovídající řetězce miRNA a mRNA, je obvykle inhibována translace této mRNA v protein.[7] Někdy je namísto toho usnadněn rozklad molekuly mRNA: v tomto případě zřejmě vznik dvouvláknové RNA navozuje v buňce proces podobný RNA interferenci způsobované siRNA molekulami.[7] MiRNA může zřejmě také zasáhnout DNA, která koresponduje s danou mRNA, na níž se miRNA navázala – v tomto případě fungují miRNA spolu s proteiny. označovanými jako miRNP (microribonuclear proteins).
Role miRNA v medicíně
editovatŠpatná funkce či regulace miRNA může způsobit v některých případech vážné choroby. Proto je miRNA v centru pozornosti vědců a její výzkum je velmi žádán. Poprvé byla deregulace miRNA v kancerogenezi spojena se vznikem leukémií a lymfomů.[8] Dnes se hledají léky na bázi miRNA, které by pomáhaly například při onemocněních rakovinné povahy a nemocech kardiovaskulární a nervové soustavy.[9]
Některé studie například zjistily, že pokud jsou myši uměle modifikovány tak, aby produkovaly nadměrné množství proteinu c-myc (který má roli ve vzniku rakoviny), umírají na rakovinu mnohem dříve, pokud navíc jejich těla produkují nadměrné množství miRNA.[10] Jiný výzkum prokázal, že miRNA se podílí na regulaci proteinu E2F1, který má roli v proliferaci buněk. V tomto případě se miRNA váže na mRNA a brání tím translaci.[11] Je také možné na základě měření aktivity několika stovek genů kódujících miRNA u pacientů trpících nádorovým bujením zjistit, o jaký typ rakoviny se jedná a z jaké tkáně rakovina vznikla.[12]
Je zřejmé, že miRNa má značný vliv i na činnost srdce. Exprese genů pro miRNA se u lidí s poruchami srdeční činnosti značně odlišuje od zdravých lidí. Zřejmé je to zejména v případě kardiomyopatie,[13][14][15], ale i v případě embryonálního vývoje srdce, poruch vývoje (hypertrofie) a podobně.[16][17][18][19][20][21]
Nejnovější studie také ukázaly, že miRNA produkované rýží (a dalšími rostlinami) nejenže přežívá trávicí proces živočichů, ale dokonce ovlivňuje svojí činností expresi genů. Například MIR168a interferuje s mRNA, ze které se translatuje receptor pro LDL. Dochází tak k utlumení schopnosti živočichů odstraňovat z plazmy LDL.
Další role miRNA
editovatU rostlin jsou miRNA jedním z mechanismů, které patogeny využívají k překonání obranných mechanismů rostlin a usnadnění jejich kolonizace. Stále více důkazů ale naznačuje, že i prospěšné mikroby využívají miRNA k usnadnění symbiózy. Např. mykorhizní houba Pisolithus microcarpus kóduje miRNA, která vstupuje do rostlinných buněk a stabilizuje symbiotickou interakci.[22]
Literatura
editovatNanjing University School of Life Sciences News Zhang a kol.: "Exogenous plant MIR168a specifically targets mammalian LDLRAP1: an evidence of cross-kingdom regulation by microRNA" Publishing on Cell Research, September 20, 2011.
Reference
editovatV tomto článku byl použit překlad textu z článku MicroRNA na anglické Wikipedii.
- ↑ Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. December 1993, roč. 75, čís. 5, s. 843–54. Dostupné online. doi:10.1016/0092-8674(93)90529-Y. PMID 8252621.
- ↑ Ruvkun G. Molecular biology. Glimpses of a tiny RNA world. Science (journal). October 2001, roč. 294, čís. 5543, s. 797–9. doi:10.1126/science.1066315. PMID 11679654.
- ↑ Archivovaná kopie. www.hoxfulmonsters.com [online]. [cit. 2009-10-21]. Dostupné v archivu pořízeném dne 2009-04-27.
- ↑ Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature. November 2004, roč. 432, čís. 7014, s. 231–5. doi:10.1038/nature03049. PMID 15531879.
- ↑ Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. January 2001, roč. 409, čís. 6818, s. 363–6. doi:10.1038/35053110. PMID 11201747.
- ↑ Kurihara Y, Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc. Natl. Acad. Sci. U.S.A.. August 2004, roč. 101, čís. 34, s. 12753–8. Dostupné online. doi:10.1073/pnas.0403115101. PMID 15314213.
- ↑ a b CARTHEW, R. W.; SONTHEIMER, E. J. Origins and Mechanisms of miRNAs and siRNAs. Cell.. 2009, roč. 136, čís. 4, s. 642–55. Dostupné online. ISSN 1097-4172.
- ↑ Musilova, K; Mraz, M. MicroRNAs in B-cell lymphomas: how a complex biology gets more complex. Leukemia. Macmillan Publishers Limited, 2015, roč. 29, čís. 5, s. 1004–1017. PMID 25541152.
- ↑ Vicki Glaser. Tapping miRNA-Regulated Pathways. Genetic Engineering & Biotechnology News. Mary Ann Liebert, Inc., 2008-03-01. Dostupné online [cit. 2008-05-16].
- ↑ He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature. June 2005, roč. 435, čís. 7043, s. 828–33. doi:10.1038/nature03552. PMID 15944707.
- ↑ O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature. June 2005, roč. 435, čís. 7043, s. 839–43. doi:10.1038/nature03677. PMID 15944709.
- ↑ Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. June 2005, roč. 435, čís. 7043, s. 834–8. doi:10.1038/nature03702. PMID 15944708.
- ↑ Thum T, Galuppo P, Wolf C, et al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation. July 2007, roč. 116, čís. 3, s. 258–67. doi:10.1161/CIRCULATIONAHA.107.687947. PMID 17606841.
- ↑ van Rooij E, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. U.S.A.. November 2006, roč. 103, čís. 48, s. 18255–60. doi:10.1073/pnas.0608791103. PMID 17108080.
- ↑ Tatsuguchi M, Seok HY, Callis TE, et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J. Mol. Cell. Cardiol.. June 2007, roč. 42, čís. 6, s. 1137–41. doi:10.1016/j.yjmcc.2007.04.004. PMID 17498736.
- ↑ Zhao Y, Ransom JF, Li A, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell. April 2007, roč. 129, čís. 2, s. 303–17. doi:10.1016/j.cell.2007.03.030. PMID 17397913.
- ↑ Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. July 2005, roč. 436, čís. 7048, s. 214–20. doi:10.1038/nature03817. PMID 15951802.
- ↑ Xiao J, Luo X, Lin H, et al. MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J. Biol. Chem.. April 2007, roč. 282, čís. 17, s. 12363–7. Dostupné v archivu pořízeném dne 2020-07-03. doi:10.1074/jbc.C700015200. PMID 17344217. Archivováno 3. 7. 2020 na Wayback Machine.
- ↑ Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med.. April 2007, roč. 13, čís. 4, s. 486–91. doi:10.1038/nm1569. PMID 17401374.
- ↑ Carè A, Catalucci D, Felicetti F, et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med.. May 2007, roč. 13, čís. 5, s. 613–8. doi:10.1038/nm1582. PMID 17468766.
- ↑ van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science (journal). April 2007, roč. 316, čís. 5824, s. 575–9. Dostupné online. doi:10.1126/science.1139089. PMID 17379774.
- ↑ Johanna Wong-Bajracharya et al., The ectomycorrhizal fungus Pisolithus microcarpus encodes a microRNA involved in cross-kingdom gene silencing during symbiosis, PNAS January 18, 2022 119 (3)
Externí odkazy
editovat- Obrázky, zvuky či videa k tématu miRNA na Wikimedia Commons