Kvazimetrický prostor

Kvazimetrický prostor je matematická struktura zobecňující pojem metrického prostoru. Kvazimetrický prostor je definován stejně jako metrický prostor, ale jeho „metrika“ není nutně symetrická – jedná se o kvazimetriku. To znamená, že mohou existovat body a, b kvazimetrického prostoru takové, že vzdálenost z a do b není stejná jako vzdálenost z b do a.

Kvazimetrický prostor je abstrakcí silniční sítě (nebo jiné dopravní sítě) s množinou míst propojených obousměrnými i jednosměrnými silnicemi (kvazimetrika nemusí být symetrická, což se projevuje tím, že délka nejkratší cesty z bodu A do bodu B nemusí být stejná jako délka nejkratší cesty z bodu B do bodu A) s kvazimetrikou definovanou jako délka nejkratšího spojení z jednoho bodu do druhého.

Definice

editovat

Kvazimetrický prostor je uspořádaná dvojice  , kde X je neprázdná množina a d je zobrazení   na uspořádaných dvojicích prvků X, nazývané kvazimetrika na X, pro které jsou splněny následující podmínky:

  1.  
  2.  
  3.   (trojúhelníková nerovnost).

Příklad

editovat

Vzdálenost mezi vrcholy silně souvislého orientovaného grafu G s kladným ohodnocením hran je kvazimetrikou na množině vrcholů grafu G.

Reference

editovat

V tomto článku byl použit překlad textu z článku Kvázimetrický priestor na slovenské Wikipedii.

Literatura

editovat
  • Steen, LA, Seebach, JA: protipříklady in Topology. Holt, Rinehart and Winston, 1970.

Externí odkazy

editovat