Carmichaelova funkce

matematická funkce

Carmichaelova funkce, pojmenovaná po Robertu Danielovi Carmichaelovi, je funkce z oboru teorie čísel značená λ(n), která pro přirozené číslo n vrátí nejmenší m takové, že

pro všechna přirozená čísla a menší než n a nesoudělná s n. Tedy vrátí exponent multiplikativní grupy celých čísel modulo n.

Prvních 26 hodnot této funkce pro n = 1, 2, 3 … je 1, 1, 2, 2, 4, 2, 6, 2, 6, 4, 10, 2, 12, 6, 4, 4, 16, 6, 18, 4, 6, 10, 22, 2, 20, 12, …[1]

Carmichaelova věta

editovat

Carmichaelova věta říká, že Carmichaelovu funkci lze definovat se stejným výsledkem také pomocí rekurze:

Pro prvočíslo p a kladné celé číslo k takové, že p≥3 nebo k≤2 definujeme

 ,

což zároveň odpovídá hodnotě Eulerovy funkce.

Pro celá čísla k≥3 definujeme

 

a pro různá prvočísla   a kladná celá čísla   definujeme

 

kde   značí nejmenší společný násobek.

Jak je vidět, Carmichaelova věta zobecňuje výsledky Malé Fermatovy věty a Eulerovy věty.

Reference

editovat

Externí odkazy

editovat